Anne Milgrim: Why Smart Statistics Are the Key to Fighting Crime

This article is very insightful and interesting in understanding the data behind prisoners.

“All of this matters greatly, because public safety to me is the most important function of government. If we’re not safe, we can’t be educated, we can’t be healthy, we can’t do any of the other things we want to do in our lives. And we live in a country today where we face serious criminal justice problems. We have 12 million arrests every single year. The vast majority of those arrests are for low-level crimes, like misdemeanors, 70 to 80 percent. Less than five percent of all arrests are for violent crime. Yet we spend 75 billion, that’s b for billion, dollars a year on state and local corrections costs.Right now, today, we have 2.3 million people in our jails and prisons. And we face unbelievable public safety challenges because we have a situation in which two thirds of the people in our jails are there waiting for trial. They haven’t yet been convicted of a crime. They’re just waiting for their day in court.And 67 percent of people come back. Our recidivism rate is amongst the highest in the world. Almost seven in 10 people who are released from prison will be rearrested in a constant cycle of crime and incarceration.


So I decided to focus on using data and analytics to help make the most critical decision in public safety, and that decision is the determination of whether, when someone has been arrested, whether they pose a risk to public safety and should be detained, or whether they don’t pose a risk to public safety and should be released. Everything that happens in criminal cases comes out of this one decision. It impacts everything. It impacts sentencing. It impacts whether someone gets drug treatment.It impacts crime and violence. And when I talk to judges around the United States, which I do all the time now, they all say the same thing, which is that we put dangerous people in jail, and we let non-dangerous, nonviolent people out. They mean it and they believe it. But when you start to look at the data, which, by the way, the judges don’t have, when we start to look at the data, what we find time and time again, is that this isn’t the case. We find low-risk offenders, which makes up 50 percent of our entire criminal justice population, we find that they’re in jail. Take Leslie Chew, who was a Texas manwho stole four blankets on a cold winter night. He was arrested, and he was kept in jail on 3,500 dollars bail, an amount that he could not afford to pay. And he stayed in jail for eight months until his case came up for trial, at a cost to taxpayers of more than 9,000 dollars. And at the other end of the spectrum, we’re doing an equally terrible job. The people who we find are the highest-risk offenders,the people who we think have the highest likelihood of committing a new crime if they’re released, we see nationally that 50 percent of those people are being released.

The reason for this is the way we make decisions. Judges have the best intentions when they make these decisions about risk, but they’re making them subjectively. They’re like the baseball scouts 20 years ago who were using their instinct and their experience to try to decide what risk someone poses.They’re being subjective, and we know what happens with subjective decision making, which is that we are often wrong. What we need in this space are strong data and analytics.

What I decided to look for was a strong data and analytic risk assessment tool, something that would let judges actually understand with a scientific and objective way what the risk was that was posed by someone in front of them. I looked all over the country, and I found that between five and 10 percent of all U.S. jurisdictions actually use any type of risk assessment tool, and when I looked at these tools, I quickly realized why. They were unbelievably expensive to administer, they were time-consuming, they were limited to the local jurisdiction in which they’d been created. So basically, they couldn’t be scaledor transferred to other places.

So I went out and built a phenomenal team of data scientists and researchers and statisticians to build a universal risk assessment tool, so that every single judge in the United States of America can have an objective, scientific measure of risk. In the tool that we’ve built, what we did was we collected 1.5 million cases from all around the United States, from cities, from counties, from every single state in the country, the federal districts. And with those 1.5 million cases, which is the largest data set on pretrial in the United States today, we were able to basically find that there were 900-plus risk factors that we could look at to try to figure out what mattered most. And we found that there were nine specific thingsthat mattered all across the country and that were the most highly predictive of risk. And so we built a universal risk assessment tool. And it looks like this. As you’ll see, we put some information in, but most of it is incredibly simple, it’s easy to use, it focuses on things like the defendant’s prior convictions,whether they’ve been sentenced to incarceration, whether they’ve engaged in violence before, whether they’ve even failed to come back to court. And with this tool, we can predict three things. First, whether or not someone will commit a new crime if they’re released. Second, for the first time, and I think this is incredibly important, we can predict whether someone will commit an act of violence if they’re released. And that’s the single most important thing that judges say when you talk to them. And third, we can predict whether someone will come back to court. And every single judge in the United States of America can use it, because it’s been created on a universal data set.

Now I want to say something really important. It’s not that I think we should be eliminating the judge’s instinct and experience from this process. I don’t. I actually believe the problem that we see and the reason that we have these incredible system errors, where we’re incarcerating low-level, nonviolent people and we’re releasing high-risk, dangerous people, is that we don’t have an objective measure of risk. But what I believe should happen is that we should take that data-driven risk assessment and combine that with the judge’s instinct and experience to lead us to better decision making. The tool went statewide in Kentucky on July 1, and we’re about to go up in a number of other U.S. jurisdictions.Our goal, quite simply, is that every single judge in the United States will use a data-driven risk toolwithin the next five years. We’re now working on risk tools for prosecutors and for police officers as well, to try to take a system that runs today in America the same way it did 50 years ago, based on instinct and experience, and make it into one that runs on data and analytics.”